Learning Knowledge Base Inference with Neural Theorem Provers

Tim Rocktäschel and Sebastian Riedel
University College London
London, UK
{t.rocktaschel,s.riedel}@cs.ucl.ac.uk

Abstract
In this paper we present a proof-of-concept implementation of Neural Theorem Provers (NTPs), end-to-end differentiable counterparts of discrete theorem provers that perform first-order inference on vector representations of symbols using function-free, possibly parameterized, rules. As such, NTPs follow a long tradition of neural-symbolic approaches to automated knowledge base inference, but differ in that they are differentiable with respect to representations of symbols in a knowledge base and can thus learn representations of predicates, constants, as well as rules of predefined structure. Furthermore, they still allow us to incorporate domain-specific knowledge provided as rules. The NTP presented here is realized via a differentiable version of the backward chaining algorithm. It operates on substitution representations and is able to learn complex logical dependencies from training facts of small knowledge bases.

1 Introduction
Current state-of-the-art methods for automated knowledge base (KB) construction learn distributed representations of fact triples (Nickel et al., 2012; Riedel et al., 2013; Socher et al., 2013; Chang et al., 2014; Neelakantan et al., 2015; Toutanova et al., 2015). An open question is how to enable first-order reasoning with commonsense knowledge (Nickel et al., 2015). We believe a promising direction towards this goal is the integration of deep neural networks with the capabilities of theorem provers. Neural networks can learn to generalize well when observing many input-output examples, but lack interpretability and straightforward ways of incorporating domain-specific knowledge. Theorem provers on the other hand provide effective ways to reason with logical knowledge. However, by operating on discrete symbols they do not make use of similarities between predicates or constants in training data (e.g., LECTURERAT \sim PROFESSORAT, ORANGE \sim LEMON, etc).

Recent neural network architectures such as Neural Turing Machines (Graves et al., 2014, NTMs), Memory Networks (Weston et al., 2015b), Neural Stacks/Queues (Grefenstette et al., 2015; Joulin and Mikolov, 2015), Neural Programmer (Neelakantan et al., 2016), Neural Programmer-Interpreters (Reed and de Freitas, 2016) and Hierarchical Attentive Memory (Andrychowicz and Kurach, 2016) replace discrete functions and data structures by end-to-end differentiable counterparts. As such, they can learn complex behaviour from raw input-output examples via gradient-based optimization.

NTMs and their relatives are capable of learning programs and could in principle learn to emulate a theorem prover. However, they might not be the most efficient neural architecture for learning first-order reasoning from input-output examples. Akin to NTMs, which are end-to-end differentiable counterparts of Turing machines, we investigate Neural Theorem Provers (NTPs): end-to-end differentiable versions of automated theorem provers. A distinguishing property of NTPs is that they are differentiable with respect to symbol representations in a knowledge base. This enables us to learn representations of symbols in ground atoms (predicates and
constants) and parameters of first-order rules of predefined structure using backpropagation. Furthermore, NTPs can seamlessly reason with provided domain-specific rules. As NTPs operate on distributed representations of symbols, a single handcrafted rule can be leveraged for many proofs of queries with similar symbol representations. Finally, NTPs allow for a high degree of interpretability by providing such proofs.

Our contributions are threefold: (i) we present the construction of an NTP based on differentiable backward chaining and unification, (ii) we show that when provided with rules this NTP can perform first-order inference in vector space like a discrete theorem prover would do on symbolic representations, and (iii) we demonstrate that NTPs can learn representations of symbols and first-order rules of predefined structure.

2 Related Work

Combining neural and symbolic approaches for relational learning and reasoning has let to many promising neural network architectures over the past decades (Garcez et al., 2012). Early proposals for neural-symbolic networks are limited to propositional formulae (e.g., EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell and Shavlik, 1994) and C-ILP (Garcez and Zaverucha, 1999)). Other neural-symbolic approaches focus on first-order inference, but do not allow one to learn vector representations of symbols from training facts of a KB (e.g., SHRUTI (Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (França et al., 2014) and Lifted Relational Neural Networks (Sourek et al., 2015)).

Neural Reasoner (Peng et al., 2015) translates query representations in vector space without rule representations and can thus not incorporate domain-specific knowledge. Rocktäschel et al. (2014), Rocktäschel et al. (2015), Vendrov et al. (2016) and Hu et al. (2016) regularize distributed representations via domain-specific rules, but do not learn such rules from data and only support a restricted subset of first-order rules. The NTP proposed here builds upon differentiable backward chaining and is thus related to Unification Neural Networks (Komendantskaya, 2011; Hölldobler, 1990), but operates on vector representations of symbols instead of scalar values. Yin et al. (2015) and Andreas et al. (2016) map queries to multiple differentiable modules that can be used to retrieve answers from a KB. Clark et al. (2014) extract common-sense knowledge from textbooks in form of rules to improve KB inference by soft-matching and non-recursive forward inference. Lee et al. (2016) propose a Tensor Product Representation to answer Facebook bAbI (Weston et al., 2015a) questions. Gu et al. (2015) traverse KBs in vector space to answer queries. Socher et al. (2012) and Bowman et al. (2015) demonstrate that recursive neural networks can learn to evaluate propositional logic expressions.

3 Differentiable Backward Chaining

Backward chaining is a common method for automated theorem proving, and we refer the reader to Russell and Norvig (1995) for details. Given a goal/query (e.g. GRANDPARENTOf(X, Y)), backward chaining finds substitutions of free variables with constants of facts in a KB (e.g. \{X/ABE, Y/BART\}). This is achieved by recursively iterating through rules that translate a goal into sub-goals which it attempts to prove, thereby exploring possible proofs. For example, the KB could contain the following rule that can be applied to find answers for the above goal:
\[
\forall X, Y, Z: \text{PARENTOf}(X, Y) \land \text{PARENTOf}(Y, Z) \Rightarrow \text{GRANDPARENTOf}(X, Z).
\]
For the rest of the paper we assume all free variables are universally quantified. Furthermore, we call the conjunction of atoms before the implication symbol the left-hand side (or body) of the rule and the atom after the implication the right-hand side (or head) of the rule.

The proof exploration in backward-chaining is divided into two functions called OR and AND. The former attempts to prove a goal by unifying it with every rule’s right-hand side in a KB, yielding intermediate substitutions. For rules where this succeeds, the left-hand side and substitution is passed to the AND function. AND then attempts to prove every atom in the body sequentially by first applying substitutions and subsequently calling OR. This is repeated recursively until unification fails, atoms are proven by unification with facts in the KB, or a certain proof-depth is exceeded.
Goal and Substitution Structures The key idea behind the proof-of-concept NTP presented here is to recursively construct a neural network by replacing operations on symbols in backward chaining with differentiable operations on distributed representations. To build such a network we separate goals and substitutions into vector representations of involved predicates and constants, and structures that define the connections of a neural network.

For instance, $G = \#_1(\#_2, X)$ is an example of a structure of an entire class of goals. This structure encodes that such goals encompass a vector representation of a predicate symbol $\#_1$ and the first argument of the predicate $\#_2$. For example, the goal $\text{GRANDPAOF}(\text{ABE}, X)$ can be specified by G and vector representations $g = [v_{\text{GRANDPAOF}}, v_{\text{ABE}}]$. Furthermore, based on the structure G it is clear that proofs of that goal will be substitutions for X (e.g. v_{BART}). Akin to goals, we divide substitutions into structures and representations, as well as a scalar score $\tau \in (0, 1)$ that measures the success of the substitution. For example, proofs of goals of the structure G as defined above will be substitutions with the structure $S = \{X/\#_1\}$ accompanied by substitution representations (e.g. $s = [v_{\text{BART}}]$).

With this divide we can now redefine operations in backward chaining as follows. Operations that concern variables and rules are mapping goal and substitution structures (G and S) to new structures that instantiate sub-networks. In contrast, operations on symbols of predicates and constants can be computed in vector space in a differentiable manner. The resulting recursively constructed NTP is end-to-end differentiable. An overview of the model architecture with an example is given in Figure 1 and discussed in detail below.

OR The entry point to the NTP is an OR network (Figure 1a) that for a given goal and substitution structure (G and S) instantiates a sub-network for each one of the N rules in a knowledge base T. The unification of the ith rule’s right-hand side with a goal structure results in a new substitution structure S'. When provided with a goal representation, a unification network is computing the unification success in vector space. For example, assume at some proof-depth D in the NTP we unify $\text{GRANDFATHEROF}(\text{ABRAHAM}, X)$ with $\text{GRANDPAOF}(\text{ABE}, LISA)$. This will result in a new substitution structure $S'' = \{X/\#_1\}$, representation $s = [v_{\text{LISA}}]$ and success τ^D that is passed further in the network. In contrast to discrete unification that checks for symbol equality, we calculate a soft unification from the previous unification success of the outer network τ^{D+1} and the similarity of predicate and constant representations as follows:

\[
\tau_{\text{predicate}} = \text{sigmoid}(v^T_{\text{GRANDFATHEROF}} v_{\text{GRANDPA}}) \tag{1}
\]

\[
\tau_{\text{arg}_1} = \text{sigmoid}(v^T_{\text{ABRAHAM}} v_{\text{ABE}}) \tag{2}
\]

\[
\tau^D = \min(\tau^{D+1}, \tau_{\text{predicate}}, \tau_{\text{arg}_1}) \tag{3}
\]
AND The new substitution structure calculated by unification instantiates an **AND** network (Figure 1c) at depth D that attempts to sequentially prove the left-hand side atoms of the rule given the current substitutions. If the rule’s left-hand side structure is empty (e.g. when the right-hand side represents a fact in the KB) the **AND** network simply passes the substitutions and their success through (Figure 1b). Otherwise, it applies the substitution on the first atom of the left-hand side, resulting in a new goal structure and representation, and instantiates an **OR** network with that structure and the previous substitution.

For example, assume we have unified the right-hand side of `FATHEROF(X,Y) ∧ PARENTOF(Y,Z) ⇒ GRANDFATHEROF(X,Z)` with the goal `GRANDFATHEROF(A,BRAHAM,Q)`. The result is a unification success τ^D as calculated in Eq. 3, as well as a new substitution structure $S = \{Q/Z, X/\#_1\}$ where $s = [v_{ABRAHAM}]$ becomes the input to the **AND** network. This network will first apply the substitution to `FATHEROF(X,Y)`, resulting in a new goal structure $G' = \#_1(\#_2, Y)$. This structure now instantiates another NTP (i.e. an **OR** module) of depth $D - 1$, which attempts to prove the input goal representation $g = [v_{FATHEROF},v_{ABRAHAM}]$.

For every proof, i.e., every possible substitution of the structure $S'' = \{Q/Z, Y/\#_1\}$, a new **AND** module is instantiated that attempts to recursively prove the remainder of the left-hand side (PARENTOF(Y,Z) in the example above). Finally, the successes of all identical substitutions (i.e. substitutions to the same variables or representations of constants) are merged by taking their max.

Note that given a KB, goal structure and depth, the network structure of the NTP is fully specified and many goals of the same structure can be used to perform training and inference with the NTP.

Trainable Rules NTPs are not only differentiable with respect to symbol representations in the KB, but also latent symbol representations in first-order rules of predefined structure. For instance, we could assume that for some predicates in a KB a transitive relationship holds. We can define a rule template $\#_1(X,Y) ∧ \#_1(Y,Z) ⇒ \#_2(X,Z)$ whose latent predicates $v_{\#_1}, v_{\#_2}$ are trainable parameters and optimized in the same way as symbol representations.

4 Experiments and Results

We implemented an NTP with differentiable backward chaining in TensorFlow (Abadi et al., 2015). Symbol representations are initialized randomly and constrained to unit-length. During training we iterate over the set of known facts, and optimize negative log-likelihood of the proof success of every fact based on all other facts (and rules) using Adam (Kingma and Ba, 2015). Furthermore, for every training fact we sample an unobserved fact for the same predicate (but different entity-pair) and optimize its proof with a target success of zero.

Our NTP implementation is tested on toy KBs for different scenarios shown in the four different subplots in Figure 2. Every column (within a subplot) represents a predicate and every row an entity-pair. Training facts (red) and test facts (blue) in the first subplot are consistent with two rules: $r_1(X,Y) ∧ r_2(Y,Z) ⇒ r_3(X,Z)$ and $r_3(X,Y) ∧ r_4(X,Y) ⇒ r_5(X,Y)$. The other three subplots show predictions between 0 (white) and 1 (black) of the different modes discussed in text.
facts (2nd subplot in Figure 2). The third subplot shows predictions when we let the NTP try to re-
construct training facts only with the help of other
facts by learning symbol representations (similar to
other representation learning approaches for KB in-
ference). Finally, a core benefit of the NTP is visi-
table once we provide few reasonable rule templates
and optimize for rule representations that best ex-
plain observed facts (4th subplot). We found that
this can work remarkably well, but also noticed that
the quality of trained rules is varying with different
random initialization of the rule’s parameters. We
need to investigate in future work how the robust-
ness of rule learning in NTPs can be improved.

5 Conclusion and Future Work

We proposed neural theorem provers for knowledge
base inference via differentiable backward chaining,
which enables learning of symbol representations
and parameters of rules of predefined structure.

Our current implementation has severe computa-
tional limitations and does not scale to larger KBs
as it investigates all possible proof paths. However,
there are many possibilities to improve upon the pre-
sented architecture. For instance, one can batch-
ify all rules whose right-hand side have the same
structure and employ existing architectures such as
Memory Networks or hierarchical attention for this
task. Furthermore, it is possible to partition and
batch rules not only by their right-hand side but also
left-hand side structure to instantiate a single AND
module for every partition. To further speed-up the
prover, we want to investigate processing batches of
queries, as well as differentiable ways of maintain-
ing only the N best instead of all possible substitu-
tion representations at every depth of the prover.
In addition, we will work on more flexible versions of
neural theorem provers, for instance, where unifica-
tion, rule selection and application itself are train-
able functions, or where facts in a KB and goals can
be natural language sentences.

Acknowledgments

We thank Isabelle Augenstein, Dirk Weissenborn,
Johannes Welbl and the reviewers for comments

\footnote{We use $\#_1 (X, Y) \Rightarrow \#_2 (X, Y)$, $\#_1 (X, Y) \land \#_2 (X, Y) \Rightarrow
\#_3 (X, Y)$ and $\#_1 (X, Y) \land \#_1 (Y, Z) \Rightarrow \#_2 (X, Z)$.}
on drafts of this paper. This work was supported
by Microsoft Research through its PhD Scholarship
Programme and an Allen Distinguished Investigator Award.

References

[Abadi et al.2015] Martín Abadi, Ashish Agarwal, Paul
Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. 2015. Tensorflow: Large-scale machine
learning on heterogeneous systems.

[Andreas et al.2016] Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Dan Klein. 2016. Learning to
compose neural networks for question answering. In
NAACL.

[Andrychowicz and Kurach2016] Marcin Andrychowicz
and Karol Kurach. 2016. Learning efficient al-
gorithms with hierarchical attentive memory. arXiv

[Bowman et al.2015] Samuel R Bowman, Christopher
Potts, and Christopher D Manning. 2015. Recursive
neural networks can learn logical semantics. In CVSC.

Yang, and Christopher Meek. 2014. Typed tensor de-
composition of knowledge bases for relation extrac-
tion. In EMNLP.

[Clark et al.2014] Peter Clark, Niranjan Balasubraman-
nian, Sumithra Bhakthavatsalam, Kevin Humphreys,
Jesse Kinkead, Ashish Sabharwal, and Oyvind
Tafjord. 2014. Automatic construction of inference-
supporting knowledge bases. In AKBC.

[Ding1995] Liya Ding. 1995. Neural prolog-the con-
cepts, construction and mechanism. In 3rd Int. Con-
ference Fuzzy Logic, Neural Nets, and Soft Comput-
ing.

[França et al.2014] Manoel VM França, Gerson Zaver-
ucha, and Artur S dAvila Garcez. 2014. Fast rel-
erational learning using bottom clause propositionalization
with artificial neural networks. Machine learning,

[Garcez and Zaverucha1999] Artur S d’Avila Garcez and
Gerson Zaverucha. 1999. The connectionist inductive
learning and logic programming system. Applied

[Garcez et al.2012] Artur S d’Avila Garcez, Krysi-
Broda, and Dov M Gabbay. 2012. Neural-
symbolic learning systems: foundations and applica-
tions. Springer.

[Graves et al.2014] Alex Graves, Greg Wayne, and Ivo

[Nickel et al.2015] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015. A review of relational machine learning for knowledge graphs: From multi-relational link prediction to automated knowledge graph construction. IEEE.

